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Abstract—The paper introduces the concept of entropy of a finite element. The general approach
is based on the maximum-entropy (minimum-bias) principle. The results obtained for basic elements
show that this entity may provide a quantitative evaluation of the complexity of a finite element in
the context of the adopted physical model and serve as a parameter in its overall characterization.
Copyright T 1996 Elsevier Science Ltd.

1. INTRODUCTION

Since Shannon introduced the entropy as the central concept of information theory in his
celebrated paper (Shannon, 1948), it has been extensively used in various fields. The entropy
quantifies the degree of uncertainty (and thereby the value of information to be obtained)
which is relevant for numerous situations requiring the decision making processes. As finite
element analysis involves a certain selection procedure of a suitable element among the
available ones, this concept may be useful in the context of this analysis.

The variety of finite elements available [see, for example. Zienkiewicz (1977), Kar-
destuncer (1987), Beltzer (1990), MacNeal (1994)], which is perhaps the most attractive
feature of the finite element method, poses a problem of their comparative quality or
performance. This problem may be approached from various points of view, such as
simplicity of the finite element, its completeness, conformability, etc. There are aspects of
the finite element performance which still lack a quantative evaluation and introducing the
entropy concept may help fill the gap.

The present work deals with the definition and evaluation of the information *““stored”
by a finite element. This quantity may adequately describe what is usually called the
complexity of the element, in a sense that a more complex element stores more information.
Accordingly, it may provide an additional parameter for evaluation of the quality of a
finite element, and may be useful at the stage of a finite element design as well as for the
classification of finite elements.

The treatment below is based on the maximum-entropy (or minimum-bias) principle,
which states that the most likely probability distribution follows from maximization of the
entropy subjected to the given constraints. Jaynes (1957, 1979) provided a particularly
elegant formalism for implementing this principle to physical systems. Applications to
evaluation of the accuracy of approximate methods (Ritz, Galerkin) were given by Beltzer
(1973, 1974). The present work and short communication by Beltzer and Gotlib (1995) are
sequels to the above works. For an extensive exposition of the entropy concept. the reader
is referred to the monograph by Kapur (1989).

Section 2 below deals with the derivation of basic equations and relevant consider-
ations. [t is shown that the account for the prior constraints (such as estimates and bounds)
on the value of the unknown field gives rise to the finite value of the entropy associated
with the finite element. This is carried out with the help of the so-called hypervolume which
arises in the multi-dimensional space of the nodal values when proper constraints are
taken into account. Section 3 deals with calculations of the hypervolume for some typical
finite elements and Section 4 with calculations of their entropy. Conclusions are given in
Section 5.
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2. BASIC EQUATIONS

The finite element is characterized by its geometry and shape functions. For the sake
of certainty, consider the assumed dimensionless displacement field, U, and set the basic
relation

n

Ux) = ). ugi(x) (M

=1

with u, being the unknown nodal values (degrees of freedom) of a finite element and g,(x)
the given shape functions. As far as the nodal values u; are unknown, one may ascribe
uncertainty (entropy) to eqn (1). The greater the uncertainty, the greater value of infor-
mation emerges when the nodal values i, are specified. Consequently, from this viewpoint,
a finite element should be so designed as to ensure a maximal prior uncertainty (or minimal
bias) under the given constraints. This paves the way for application of Jaynes’ principle.

To this end, introduce the n-dimensional space of the nodal values {ulue R"} and the
k-dimensional coordinate space {x|xeR*}. The way of arriving at the finite value of the
uncertainty (entropy) associated with the representation of eqn (1) is the account for the
prior information (constraints) available on U(x). Depending on a particular problem, the
prior constraints may include bounds or estimates for, say, the average field of U, its
maximal value, etc. We consider below the case when the prior constraint on U(x) is as
follows:

( | U(x)dx < Q, (2

vS

where S is the volume of the finite element in R*.

The value of Q depends on a particular model under consideration. For example, if the
problem deals with a plate bending, then U(x) is the deflection function in the frameworks of
the linear theory, and Q may be estimated as

0 = 0(5°Q). 3)

where ¢ « 1 1s a small parameter, and Q is a typical plate area.

Applying the above maximum entropy principle to eqns (1) and (2), one arrives at the
following formulation : find the joint probability density function p(u) = p(u,, ... u,) of the
nodal values which delivers the maximum to the entropy functional

H= —J p(u) In p(u) du 4)
-
under the constraint (2)
[ Ul(x)dx < Q ®)
5
and the normalization condition for p(u)
J pwydu=1. (6)
iy

Note that eqn (4) may contain an additive arbitrary constant.
On the substitution of the expansion (1) in eqn (5) one gets the constraint
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,:Zl ;} B, < Q (7
with the coefficients
B, = L gi(x)g;(x) dx. (8)
The expression
i i Buu, = Q 9)

1s a symmetric quadratic form in the space of nodal values u. The geometrical type associated
with eqn (7) depends on the eigenvalues of its symmetrical matrix B. If all the eigenvalues
are positive (and naturally real ones), then this quadratic form specifies an ellipsoid.

Given the conditions (5) and (6) only, the extremizer of eqn (4) is the uniform
distribution over the volume V in the n-dimensional space as specified by the form of eqn
(7). Therefore p(u) = constant = V"~ '. Substituting this probability density p(u) in eqn (4),
one gets the expression for the prior entropy given by

| |
H= ~J ~In-—-du=1InV. (10)
;- [// [/,

In case of the n-dimensional ellipsoid, which is the one treated herein, its volume measure
V., 1s given by (Fikhtengolts, 1965)

a2 m
T

V, = 7= 11
T(2)l(n/2) ,-Ul “ (an
where a(i=1...., n) are the semi-axes of the ellipsoid. This may be expressed in terms of
the above B matrix in a more direct way. Let S be the element volume and set
C=B/S. (12)
Now eqn (9) takes the form
Couu, =g (13)
i=1j=1
with ¢ = @/S. or in the main axes
LAt =g (14)

n " 1 [
flo- 11 )

and eqn (11) may be conveniently set as
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nnzqn2

Vn"—“m(detC)"z. (16)

For the case of two nodes, this quantity is merely the area and for that of three nodes the
volume. Nevertheless, since the nodal space R” is, in general, n-dimensional, the above
quantity will be referred to below as the hypervolume.

Thus, the prior entropy (10) is given by

H,=InV, (17

where the subscript » indicates the number of nodal values (degrees of freedom) and may
also be considered as a constraint. If the nodal values u; are then specified with absolute
precision, there would be no residual entropy H™ and eqn (17) also yields the value of
information obtained. However, this is not the case as there are inevitable (inherent)
inaccuracies, due to round-off errors, approximate integration, etc. Consequently, the final
entropy of the element is given by

Hrfl.m = HH_H:',ES (18)

which provides the value of the information obtained when the nodal values u, are specified.
In addition, it seems natural to define the entropy (information) per nodal value by

Hr'm
n
n .

h;hn —

(19)

The next section deals with computation of the hypervolume as given by eqns (11) and (16)
for basic finite elements.

3. HYPERVOLUME

Figure 1 shows the types of finite elements to be considered herein in a subsequent
order.

(1) 1t would be instructive to begin with a simple linear element. In the case of two
nodes (k = 1, n = 2) the shape functions are

X

X
g (x) = Eandgz(»\”) =1- S (20)
with S being the element length. The quadratic form of eqn (13) is reduced to
U+ il = g, 2

where ¢ = Q/S and all the coefficients follow from eqns (8) and (12). The expression (21)
describes an ellipse. Its area (hypervolume) V'is

V, = 2n/3¢ ~ 10.8834. (22)

In the case of a three-node linear element (k = 1, n = 3), the question arises about an optimal



Entropy characterization of finite elements 3553

k=1, n=2 k=1, n=3
Xl X2 X3
e B e
: ]
< >
k=2, n=3 k=2, n=
c) d)

k=2, n=4 k=2, n=

e) f)

k=3, n=4
k) 1)
(2

Fig. 1. Types of finite elements.

location of the internal “*node”. Although it is well-known that the location x = §/2 is in
general the best one, this author is not aware of any pertinent quantitative analysis.
To this end, set three shape functions as

(x—x5)(x—x3)

g1(x) = (x, —x2)(x, —x3)
B (x—x Hx—x3)
200 = ()G =)
ga(x) = (x A.J\")(x_xz) 23)

(2 —=x X3 —x3)

Specifying x, = 0. x, = Sand x, = S with 0 < ¢ < 1, get from eqn (8) the matrix B = [B,]
as follows:
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[1 —5641+4106° 1 —2+455 1 3+105°—105
30 52 60 52(5—1) 60  d(5—1)
1 —2+456 1 1 I —3+450
S| - *“"i‘“:t"* 0 e “'i“‘j:“: (24)
60 5(5—1) 30 52(5—1)° 60 5(6—1)°
_l_3+1062—I0(5 i —3+50 L6+1052—155
L 60  d(—1) 60 5(6—1)2 30  (5—1)* |
This provides the determinant of C [see eqn (12)] as
I
C= - (25)

216052 (6—1)2

The substitution of this simple expression in eqn (16) shows that 3 = 1/2, (0 <6 < 1),
provides the strong maximum to F; and thereby specifies the optimal location of the
internal node, in agreement with our intuition.

Completing the case of the three-node linear element for § = 12, get the eigenvalues
/ini=1,2, 3 of the matrix 15C as

7, = 1.2056, /, =2.5000, 4, =8.2944 (26)
and the semi-axes as
15 12
a=(/—"> =123, @7

Now eqn (11) or (16) yields the relevant volume as
V., = 48.669¢"* (28)

instead of the result for the two-node element given by eqn (22).
(2) In the case of the three-node triangular element (k = 2, n = 3) the computations
are particularly simple in the area coordinates o,, i = 1,2, 3

U= ua,. (29)
i=1
The C matrix gets the form
B 1 21 1
- = 30
C ST 1 2 1 (30)
I 1 2
and the semi-axes are given by
12 1.2
a,=(—ﬂ> . i=1.2.3 31)
/i

with
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=4, =1 ;=1 (32)

This yields for the three-node triangle
Vy, =87.063¢4" " (33)

Considering the four-node triangle, place a “‘node™ at its centroid with the coordinates
o; = 1/3,i=1,2,3. Now the nodal representation for the field U is

3
U= Z U, + Uy 272, %5 (34)
i=1

where the last term reflects the contribution of the “*bubble’ function.
The C matrix gets the form

/6 1/12 1712 3720

/12 16 1/12 3720
C= (35)
112 1712 1/6  3/20

3,20 3/20 3/20 81,280
with the eigenvalues
A =0.57205, 4, =/, =0.08333, 4, =0.05057. (36)
The hypervolume is
V, =348.174° (37)

as compared to that of the three-node triangle given by eqn (33).
(3) For the four-node rectangular element &k = 2 and n = 4. The shape functions are

oy = TR maxikab b —ax, —ab
gl-lwl - 4ab . 92'1--3 _ 4ab .
¢ (xi +b)x: +ax, +ab ) _(xy=b)x; +ax, —ab
g.’%(xln\z) = 4ab N gg(,\,,xz) = Aab . (38)

where 2a and 25 specify the size of the rectangle in the symmetry reference frame. Equation
(13) is given by

2t +us +ud +ui) F2u ity +uy s+ 20 g+ 20+ usuy +2uu, = 18¢. (39)
The eigenvalues are positive with their product equal to 81. The hypervolume is
V,=T12ng> =~ 710.614". (40)

Turning to the five-node rectangular element (k = 2, n = 5) introduce a “bubble” shape
function
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(xi =) (x3 —a’)

41
(ab)? “h)

g5('r] ﬂ~\".’) =

In order to evaluate the additional entropy due to this modification, compute the C matrix,
which is

T19 1718 1736 /18 179
/18 19 1/18 1/36 1/9
C=11/36 1/18 1,9 1/18 1/9 |. (42)
1/18 136 1/18 1/9 19
L1919 19 1/9  64/225 |

Now, eqn (11) or (16) provides the hypervolume as
Ve=2571.1¢"" (43)

instead of the result given by eqn (40) for the four-node rectangle.
(4) Turning to the three-dimensional case, consider the four-node tetrahedron element
(k =3, n=4). This time

U=Y uz, (44)

2 1 1 1
c_ L2 45)
2001 1 21
112

with the eigenvalues 4 = 1/4 and /4, = 4, = /, = 1/20. According to eqn (16) the hyper-
volume is

V, = 882.76¢". (46)

Finally, consider the eight-node brick element. In the natural coordinates ¢, # and {
the shape functions are given by

g = +ee)(1+nm)(1+E6)/8 i=1,2,...8 (47)
where ¢, 1, and {, are the nodal coordinates. The eigenvalues of the 8 x 8§ C matrix are

A1 =0.12500, /7, =/ =4, = 0.04167, 4i.=4i, = 4A; =0.01389, /i = 0.00463
(48)
and

detC = 1.12156 % 107 (49)

Now eqn (16) yields
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Ve = 1.2119x 1074°. (50)

Now the entropy of these elements easily follows from egns (17)-(19).

4. ENTROPY

In order to avoid the scale effect, the above field U has been taken dimensionless
U= WL, (51)

where W is a physical displacement and L is a typical size of the finite element. In general,
it may be put L* = Swhere k = 1, 2, 3, depending on the dimensions of the finite element.
As to the value of Q appearing in constraint (2), it depends on a particular model under
consideration and may be specified in various ways. Assuming that the finite element is not
singular and the problem is that of linear elasticity, a basic constraint may be set as

|W| < el (52)

where ¢ « 1 is a small parameter typical of the problem at hand. The incorporation of this
constraint, as it is, does not seem to be easy. It is convenient to reformulate eqn (52) in a
weaker form given by eqn (2), which yields Q = ¢’L*, k = 1, 2, 3 depending on the dimension
of the finite element. This provides for all the elements

= (53)

and enables one to adapt the above results for the hypervolume to this particular model by
substituting & for ¢. Then the corresponding prior entropy H, follows from eqn (17).

H,=InV, (54)

As to the residual entropy H'™, it characterizes the accuracy of a particular method of
solution applied to specify the nodal values u,, as noted in Section 2 and thus depends on
the problem at hand. Its exact evaluation appears difficult, and comments on the order of
this value are given immediately below. Since the order of magnitude of u; is O(g), as eqns
(51) and (52) show, the error ¢ in specifying the nodal values may be set as O(¢™) with
m > 2, unless there is a more specific knowledge of this inherent inaccuracy. Taking into
account the dimension #» of the space of the nodal values, the residual entropy is given by

H™ = In(¢") = nln(e"). (55)

The final value of the entropy (or of the obtained information) now follows from eqn (18)

H!™"=InV,—nln¢ (56)

and that of the entropy per nodal value from eqn (19)
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Fig. 2. Entropy versus inherent error.

v
B = “T “in¢. (57)

Figures 2 and 3 show the results for H/™ and Fig. 4 for 4™ for 0 < ¢ < 0.6 and m = 3.
There is a well-defined disparity in the values of the entropy for the different elements. A
smaller inherent error ¢ leads to a greater value of the entropy as expected. On the other
hand, there is decay in the entropy with increasing ¢.

The results consistently show that for the same number of the nodal values and the
same value of the inherent error, the plane element provides more information than the
linear one and the solid element provides more than the plane one. A comparison of
the four-node triangular and four-node rectangular elements shows that they provide
information of the same order but the latter is more informative. In other words, the four-
node rectangular element is “‘less biased” than the four-node triangular element. Among
the elements considered, the brick element has by far the best entropy and the entropy per
nodal value. Note that the above results are valid under constraint (2) and may change if
other constraints come into play.
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Entropy Hfin

Inherent Error ¢

Fig. 3. Entropy versus inherent error.

5. CONCLUSIONS

The concept of entropy (information) of a finite element, introduced in the above
considerations, depends. on the one hand, on its number of degrees of freedom, shape
functions and geometry, in agreement with our intuition. On the other hand, it is influenced
by a particular physical model under consideration, which comes heavily into play through
prior constraints on the unknown field. It thus provides a possibility for a quantitative
evaluation of the complexity (lack of bias) of the finite element in the frameworks of the
adopted physical model and may serve as a parameter in its overall characterization. This
in no way diminishes the role of other criteria such as completeness, conformability, etc.,
which should be considered from the very outset. As the example with the three-node linear
element indicates, the entropy evaluation may be particularly useful for optimizing the
node location. Though the computations deal with a particular type of constraint given by
eqn (2), the presented approach remains valid for other types of restrictions too. In
particular, the account for stiffer, more specific constraints should bring the entropy down.
This case merits further investigations.
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Entropy per Nodal Value h fin

Inherent Error ¢

Fig. 4. Entropy per nodal value versus inherent error.
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